Understanding the Radar Backscattering from Flooded and Nonflooded Amazonian Forests: Results from Canopy Backscatter Modeling
نویسندگان
چکیده
T o understand the potential of using multiwavelength imaging radars to detect flooding in Amazonian floodplain forests, we simulated the radar backscatter from a floodplain forest with a flooded or nonflooded ground condition at C-, L-, and P-bands. Field measurements of forest structure in the Anavilhanas archipelago of the Negro River, Brazil, were used as inputs to the model. Given the same wavelength or incidence angle, the ratio of backscatter from the flooded forest to that from the nonflooded forest was higher at HH polarization than at VV polarization. Given the same wavelength or polarization, the ratio was larger at small incidence angles than at large incidence angles. Given the same polarization or incidence angle, the ratio was larger at a long wavelength than at a short wavelength. As the surface soil moisture underneath the nonflooded forest increased from 10% to 50% of volumetric moisture, the flooded /nonflooded backscatter ratio decreased; the decreases were small at Cand L-band but large at P-band. When the leaf size was comparable to or larger than the wavelength of C-band, the leaf area index (LAI) had a large effect on the simulated C-band (not L-band or P-band) backscatter from the flooded and nonflooded forests.
منابع مشابه
A three-component scattering model for polarimetric SAR data
An approach has been developed that involves the fit of a combination of three simple scattering mechanisms to polarimetric SAR observations. The mechanisms are canopy scatter from a cloud of randomly oriented dipoles, evenor double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants and Bragg scatter from a moderately rough surface. This composite scattering m...
متن کاملAmazon floodplain water level changes measured with interferometric SIR-C radar
We find that interferometric processing of repeat-pass L-HH-band shuttle imaging radar (SIR-C) data reveals centimeter-scale changes in the elevations of water surfaces within flooded vegetation. Because radar pulses reflect specularly from the water surface, interferometric observations of open water are incoherent. However, within flooded forests and inundated shrubs, the L-band radar pulse p...
متن کاملNew Results in Microwave Remote Sensing of Vegetation
For active and passive remote sensing of vegetation biomass and underlying soil moisture, it is important to have an accurate physical model and an inverse method that relies on as few parameters as possible. In this paper two new modeling results and one new inverse method will be described. The active/passive response of a quasi periodic canopy such as corn will be treated. It will take into ...
متن کاملMonitoring of rain water storage in forests with satellite radar
The sensitivity of radar backscatter to the amount of intercepted rain in temperate deciduous forests is analysed to determine the feasibility of retrieval of this parameter from satellite radar data. A backscatter model is validated with X-band radar measurements of a single tree exposed to rain. A good agreement between simulation and measurements is observed and this demonstrates the ability...
متن کاملRepeat-pass multi-temporal interferometric SAR coherence variations with Amazon floodplain and lake habitats
We have analysed interferometric coherence variations in Japanese Earth Resources Satellite (JERS-1) L-band synthetic aperture radar (SAR) data at three central Amazon sites: Lake Balbina, Cabaliana and Solimões-Purús. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path that returns energy to the antenna, coherence will vary with vegetation ty...
متن کامل